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Abstract have become the most promising learning al-

The reduced support vector machingorithm for classification as well as regression
(RSVM) has been proposed to avoid the confid], [12] which are the fundamental tasks
putational difficulties in generating a nonlinin Data Mining [17]. The SVM classifiers
ear support vector machine classifier for ean be generated via solving a minimiza-
massive dataset. RSVM selects a small ratien problem. However, SVM suffers from
dom subset from the entire dataset with a usgte difficulty of long computational time and
pre-specified sizen to generate a reducedarge memory usage in using nonlinear ker-
kernel (rectangular) matrix. This reduced kemels on large datasets which come from many
nel will replace the fully dense square kernekal applications. The reduced support vector
matrix used in the nonlinear support vectamachine (RSVM) [7] has been proposed to
machine formulation to cut the problem sizavoid these difficulties in generating a non-
and computational time and will not scarifylinear support vector machine classifier for
the prediction accuracy. In this paper, wa massive dataset. The basic idea of RSVM
propose a new algorithm, Incremental Rds using a small rectangular kernel matrix to
duced Support Vector Machine (IRSVM). Inreplace the fully dense square kernel matrix
contrast to purely random selection schemesed in the nonlinear support vector machine
used in RSVM, IRSVM begins with an ex-formulation without scarifying the accuracy.
tremely small reduced set and incrementallgomputational time, as well as memory us-
expands the reduced set according to an iage, is much smaller for RSVM than that
formation criterion. This information-criterionfor a conventional SVM using the entire
based incremental selection can be achievedtaset. As a result, RSVM also simplifies the
by solving a series of small least squaresharacterization of the nonlinear separating
problems. In our approach, the size of resurface. According to Occam’s razor [13], as
duced set will be determined automaticallyell as Minimum Description Length (MDL)
and dynamically but not pre-specified. Th§l3], RSVM might have better generaliza-
experimental tests on four publicly availabléion ability than a conventional SVM. This
datasets from the University of Californiareduced kernel technique has been success-
(UC) Irvine repository show that IRSVM usedully applied to other kernel-based learning
a smaller reduced set than RSVM withoudlgorithm, such as proximal support vector
scarifying classification accuracy. machine (PSVM) [4] and:-smooth support
Keywords: Support vector machine, re_vector regressione{SSVR) [8]. In [7], the re-

duced support vector machine, reduced s%tuced set is selected randomly from the entire

kernel function. least squares problem ataset with a user pre-specified reduced set
’ 9 P ' sizem. It is typically much smaller than the

size of entire dataset. It is natural to raise two
guestions as follows:

Recently, support vector machines (SVMs)
with linear or nonlinear kernels [1], [2], [16] 1) Is there a way to choose the reduced

1. Introduction



set other than random selection so thatl, indicating one of two classesi, and
RSVM will have a better performance?4_, to which the point belongs. We represent
2) Is there a mechanism that determingbese data points by anxn matrix A, where
the size of reduced set automatically aheith row of the matrixA4, A;, corresponds to
dynamically? the ith data point. We use am x m diagonal

In this paper, we propose our |ncrementénatrix D with ones or minus ones along its
Reduced Support Vector Machine (IRSVMyliagonal to specify the membership of each
that automatically and incrementally selectdoint. In other words,D;; = +1 depending
representative data points to form the réan whether the label ofth data point is+1
duced set. The experimental tests on fo@ —1. The main goal of the classification
pub||c|y available datasets from the Univerpr0b|em is to find a classifier that can prediCt
sity of California (UC) Irvine repository [14] the label of new unseen data points correctly.
show that IRSVM used a smaller reduced séhis can be achieved by constructing a lin-
than RSVM without scarifying classificationear or nonlinear separating surface which is
accuracy. implicitly defined by a kernel function. We

Now we briefly outline the contents ofwill focus on nonlinear case in this paper. The
the paper. Section 2 provides the main idé¥nlinear kernel matrixi'(A, A') € R™™
and formula for RSVM. In section 3, we(wherem is the size of the training set) on
describe our sequential and batch versions lgfge datasets used in conventional support
incremental reduced support vector machingector machine [1], [2], [16] will lead to some
The numerical results are shown in Section £0mputational difficulties [7]. To avoid these
Section 5 concludes the paper. difficulties, the reduced support vector ma-

A word about our notation and backgrounghine (RSVM) [7] uses a very small random
material is given below. All vectors will be Subset of sizen of the originalm data points,
column vectors unless transposed to a roihere m << m. We denote this random
vector by a prime superscript For a vec- SubsetbyA, which is used to generate a much
tor x in the n-dimensional real spac&", Smaller rectangular matrik (4, A’) € R™*™

the plus functionz, is defined as(z,); = @andtoreplace the huge and fully dense square
max {0,z;}, while the step functionz, is kernel matrix X' (A, A’) used in conventional

defined agz,); = 1 if z; > 0 else(z,); = 0, SVM to cut problem size, computational time
i = 1,...,n. The scalar (inner) product ofand memory usage as well as to simplify

two vectorsz andy in then-dimensional real the characterization of nonlinear separating
spaceR" will be denoted byz’y and thep- Surface. We now briefly describe the reduced

norm of = will be denoted by]|z|,. For a Support vector machine formulation, which is
matrix A € R™*", A, is theith row of A derived from the generalized support vector

which is a row vector inR™. A column vector Machine (GSVM) [11] and smooth support

of ones of arbitrary dimension will be denotedector machine [9]. The RSVM solves the fol-
by e. For A € R™™ andB € R"*, the kernel lowing unconstrained minimization problem

K (A, B) maps R™" x R™*! into Rm*!. |n for an arbitrary rectangular kerndéf (A, A'):

particular, ifz andy are column vectors ifR"
then, K (2/, y) is a real numberK (2’, A") is a min
row vector inR™ and K (A, A') is anm x m  (&:7)eR™+12
matrix. The difference of two setd and B

is defined asA \ B = {z|x € A andx ¢ B}.
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lp(e — D(K(A, A') Dt — ev), o)I3

5(@a+?), (O

_ where the functiorp(z, «) is a very accurate
2. Reduced Support Vector Machines smooth approximation to(z), [9], which
We consider the problem of classifyings applied to each component of the vector
points into two classesd, and A_. We are e — D(K(A,A")Du — ey) and is defined
given a dataset consisting of points in the componentwise by
n-dimensional real spac&”. Each point in 1 B
the dataset comes with a class label, or ~ P(%,a) = + alog(l +e ), a>0. (2)



The function p(z,«) converges to(z), as determined by the algorithm and typically is
a goes to infinity. The positive tuning pa-smaller than the purely random ones under
rameterv here controls the tradeoff betweethe same performance level.

the classification error and the suppression

of (@,v).The diagonal matrixD e R™™ 3. Incremental Reduced Support Vector
with ones or minus ones along its diagonal t¥lachines

specify the membership of each point in the | this section, we propose our Incremental

reduced set. A solution of this minimizatiorReduced Support Vector Machine (IRSVM)
program foru and y leads to the nonlinearg|gorithm that automatically and incremen-

separating surface tally selects informative data points from the
— entire training set to generate the rectangular
K(z',A")Du = . (3) kernel matrix used in RSVM.

Problem (1) retains the strong convexit)ﬁ The nonlinear classifier generated by
and differentiability properties in thgzm+! RSVM, as shown in (4), is a linear
space of(i, 7) for any arbitraryrectangular combination  of a dictionary funct_|on
kernel. Hence we can apply the Newtorset [6] that consists of kernel functions
Armijo Algorithm [9] directly to solve (1) and _{L K(, AY), K(-, Ay), -+ K (- A;ﬁ)_}_ _

the existence and uniqueness of the optimigduced by the reduced set Intuitively, if
solution of the minimization problem (1) ardhe kernel func_tlo_ns in the dlctlonary function
also guaranteed. For convenience, we uS8l aré very similar’, the hypothesis space
®,.,(a,) to represent the objective functiorsPanned by this dictionary function set will
(1) throughout the rest of the paper. We note€ Very limited.

that the nonlinear separating surface (3) is a Based on this intuition, we propose a pro-
linear combination of a set of kernel funcCess that sequentially adding a kernel function
tions {1,K(-, A¢), K(-, Ay), -, K(-, A.)} into the dictionary function set, only when

That is, the separating surface is of the forifhe function ?S ‘Unsir_n?laf’ to the_' current
set and carrying sufficient extra information

mn R over the current set. We start with a very
> K(«', A) Dy = . (4)  small reduced seti, typically a size of 2,
i=1 then we add a new data point; into the

In a nutshell, the RSVM can bereduced set only when the extra information
split into two parts. First, it selects acarried in the vector(A, A]) with respect
small random subset from the entiréo the column space oi(A, A’) is greater
dataset to form a dictionary function setthan a certain positive threshold. This can be
{1,K(-,A}),K(-,A,), -, K(-,A.)}. The achieved by solving a least squares problem.
size of this small random subset is preWe let K = K(A, A") € R™ ™ for the reason
specified by users. Secondly, it determined convenience. The least squares problem we
the best coefficients of the kernel functionseed to solve is
in the dictionary function set by solving
the unconstrained minimization problem (1). min H[(g — K(A,Ag)\ 27 (5)
The classifier is a linear combination of perm
these kernel functions with these coefficientgynere 3 ¢ R™ is a free vector variable and
In next section we modify the first part3 ¢ pm s a linear combination of the func-
of the RSVM algorithm and introducetions f(A, A!),i = 1,...,m that represents
an incremental approach that begins Witfhe column space of(A, A4'). According
an extremely small reduced set and theg the first order optimality condition [10],
sequentially expands the reduced S@hding out the optimal solutiors* of above

according to an information criterion. Theyrgplem (5) is equivalent to solving a system
dictionary function set is generated by thigf normal equations:

resulting reduced set. Besides, the size of o B
the dictionary function set is dynamically K'KpB=KK(A A). (6)




If the columns of the rectangular kernel where the reduced kernd{ (A, A’) in
matrix generated by the initial reduced set (1) is that obtained in Step 4).
are linear independent, our IRSVM algorithm 6) The separating surface is given as fol-

(the sequential version) will keep the indepen- lows:

dence property throughout the whole process, K(z',A)Du = 7, (10)

so that the least squares problem (5) has a

unique solutions”, where (a,7) € R™' is the unique
solution to (9).

g = (K'K)'K'K (A, A). 7) 7) A new pointxz € R" is classified into
class+1 or —1 depending on whether
The distance- from K (A, A}) to the col- the step function:
umn space ofi is the squared root of the -
optimal value of (5) and is computed by (K(z,A)Du —~).,  (11)
r = H[{ﬁ* — K(A7A§)H2- (8) is +1 or zero, respectively.

The square distance can be written in \\e note that we have to solve normal
the fofm,fz, - ,(,]__ P)K(A, A}), where aquations (6) many times in Algorithm 3.1.
P :mK<K K)~'K' is the projection matrix The time complexity of this step i®(m?),
of R™ onto the column space df. In other \yhere 7, is the current size of the reduced
words, r? is the excess information carriedsgt |y fact. the main cost of solving the
in K (A, A7) over K(A, A"). Note that the norma| equations depends dif &, but not
size of the reduced set is very small, hence d, K(A, AY). For example, if we have the
will not lead to any computational difficulty 7 ;; decé)m]position of k'K, we will get the

in solving the least squares problem, thoughytion of (6) by backward and forward
we have to solve it many times in the wholgystitution for anyK (A, A%) [5]. In order
process. Below we describe two algorithmg, speed up Algorithm 31 we take the
sequential and batch versions. advantage of this fact, and use a batch of
) . data points to generate the new reduced
Algorithm 3.1 IRSVM Algorithm (sequen- ¢t \We propose a batch version IRSVM

tial version) algorithm as follows:
Let 9 > 0 be a given threshold.
1) Choose a very small random subsetigorithm 3.2 IRSVM Algorithm (batch
matrix A, € R™™ from the training version)
data matrixA € R™*", saym = 2, as Let § > 0 be a given threshold antbe a
an initial reduced set, and generate thfiven batch sizeB; € R”*" denotes a batch
reduced kernel matrixk'(A, Ay). Let of data and- denotes a distance vector.
Anew = AO- _
2) Selectd; € A\ A, and compute the dis-

2 1) Choose a very small random subset
tancer from the kernel vectoK (A, A}) 1

- matrix A, € R™" from the training
to .the column space oK (A, A/,.,,) by data matrixA € R™", sayin = 2, as
using (8). _ an initial reduced set, and generate the
3) It 7 >0 thenAney = Apew U A _ reduced kernel matrixi'(A4, A)). Let
4) Repeat Step 2) until several successive 7 _ A,

failures happened in 3), then the re- 2) For A; to A;.; € A\ Ay, form a batch

sulting K (A, A’ ) is our final reduced B.

kernel. 3)
5) Apply the Newton-Armijo Algorithm

[9] to solve the objective function (1):

For each B;, compute the distance
vector r, which consists of individual
distances from each of the columns

. _ of K(A, B)) to the column space of
(@t . (,7), ©) K(A, A’_ ) by using (8).

new



4) For eachA; € Bi, Apew = Auew U Set, a surrogate for a test set. All our ex-
A, if the corresponding distance valugeriments were run on a personal computer,
exceeds the threshold which consists of Pentium-4 2.4GHz proces-

5) Repeat Step 3) until several successiwor, 256 megabytes of memory and utilizing
failures in adding new points. Thenthe Windows 2000 operating system.
K(A, Al ) is our resulting reduced In order to evaluate how well each method
kernel. generalizes to future data, we performed ten-

6) Apply the Newton-Armijo Algorithm fold cross-validation on each dataset [15]. We
[9] to solve the objective function (1): also usedstratificationscheme in splitting the

. _ 5 entire dataset to keep the “similarity” between
(@it Pan(@, 7). (12) training and testing datasets. That is, we try to
_ . make the distributions of training and testin
where the reduced kel (A, A') in gats a5 closed as possible [17]. ,gA smaller tegt-
(1) is that obtained in Step 5). ing error indicates a better prediction ability.

7) The separating surface is given as fOlrpg resyits are shown in Table I. It can be

lows: R found that IRSVM used a smaller reduced
K(z', A)Du =7, (13) set than RSVM to generate the nonlinear

where (4,7) € R™! is the unique Separating surface at a comparable accuracy

solution to (10), and: € R" is a free level.

input space variable of a new point.

8) A new pointz € R" is classified into
class+1 or —1 depending on whether \We have proposed an Incremental Reduced

the step function: Support Vector Machine (IRSVM) that starts
o with an extremely small reduced set and then
(K(2', A) Dt — 7)., (14) sequentially expands to include informative
data points into the reduced set. These in-
formative data points will be identified by
solving a small least squares problem. Our
approach provides a mechanism to determine
the size of the reduced set automatically and
%/namically but not pre-specified and the

5. Conclusion

is +1 or zero, respectively.

This modified algorithm significantly re-
duces the number of times of solving th
normal equations. One awareness is tisan*

llar* points in the same batch might be adde duced set generated by this method will be

Intoour r.educed. set.. But fo.r the reason g ore representative than the one by purely
speed, this algorithm is considerable. In ne>l%l

section, we will show experimental result%
about the performance of our algorithm.

ndom selection. We have also proposed
batch version of IRSVM that will save
some computation effort in solving a series
4. Numerical Results and Comparisons  of least squares problems. All advantages of
We applied IRSVM on four publicly avail- RSVM for dealing with large scale nonlinear
able test problems, Cleveland Heart Probbrﬁ:assification problem are retained. Moreover,
BUPA Liver, lonosphere and Pima Indiandne experimental tests on f(_)ur p_ublicly av_ail-
from the University of California (UC) Irvine able Qataset from the University of Irvine
repository. The numerical results showed th&POSitory show that IRSVM used a smaller
IRSVM achieved comparable test set corredi€duced set than RSVM without scarifying
ness with SSVM and RSVM. while with 8Lc,jlassmcatlon accuracy. With all these proper-
much smaller reduced set size than RSVM.U€S: IRSVM appears to be a very promising
We implemented the batch version 0|fnethod for handllng Igrge scale cla_lssmcatlon
IRSVM using standard native MATLAB com- Problems using a nonlinear separating surface.
mands and used Gaussian kermélr, ') = References
e~Mle==l2 2 » € R™ for all our numeri- _ _
cal tests. All parameters in these tests Werbl] C. J. C. Burges. A_t_utorlal on s_upport vector machines
: § ' for pattern recognition.Data Mining and Knowledge
chosen for optimal performance on a tuning Discovery 2(2):121-167, 1998.



Tenfold Test Set Correctne§s
Tenfold Computational TimeSeconds
Methods
Dataset Size IRSVM RSVM SSVM
mXxmn Correctnes$s Correctnes®s Correctnes%s
Time sec m Time sec m Time sec
Cleveland Heart 85.53 85.60 85.59
297 x 13 4.70 17.6 2.04 30 23.20
BUPA Liver 73.97 74.24 73.65
345 % 6 7.59 18.3 2.75 35 30.59
lonosphere 95.20 95.17 96.02
351 x 34 7.90 15.1 3.48 35 36.14
Pima Indians 76.84 76.82 76.69
351 x 34 13.40 14.8 9.07 35 168.90
TABLE |

TENFOLD CROSSVALIDATION CORRECTNESS RESULTS ON FOURJC IRVINE DATASETS. m VALUE IS THE TENFOLD
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