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Abstract
The reduced support vector machine

(RSVM) has been proposed to avoid the com-
putational difficulties in generating a nonlin-
ear support vector machine classifier for a
massive dataset. RSVM selects a small ran-
dom subset from the entire dataset with a user
pre-specified sizem̄ to generate a reduced
kernel (rectangular) matrix. This reduced ker-
nel will replace the fully dense square kernel
matrix used in the nonlinear support vector
machine formulation to cut the problem size
and computational time and will not scarify
the prediction accuracy. In this paper, we
propose a new algorithm, Incremental Re-
duced Support Vector Machine (IRSVM). In
contrast to purely random selection scheme
used in RSVM, IRSVM begins with an ex-
tremely small reduced set and incrementally
expands the reduced set according to an in-
formation criterion. This information-criterion
based incremental selection can be achieved
by solving a series of small least squares
problems. In our approach, the size of re-
duced set will be determined automatically
and dynamically but not pre-specified. The
experimental tests on four publicly available
datasets from the University of California
(UC) Irvine repository show that IRSVM used
a smaller reduced set than RSVM without
scarifying classification accuracy.

Keywords: Support vector machine, re-
duced support vector machine, reduced set,
kernel function, least squares problem.

1. Introduction

Recently, support vector machines (SVMs)
with linear or nonlinear kernels [1], [2], [16]

have become the most promising learning al-
gorithm for classification as well as regression
[3], [12] which are the fundamental tasks
in Data Mining [17]. The SVM classifiers
can be generated via solving a minimiza-
tion problem. However, SVM suffers from
the difficulty of long computational time and
large memory usage in using nonlinear ker-
nels on large datasets which come from many
real applications. The reduced support vector
machine (RSVM) [7] has been proposed to
avoid these difficulties in generating a non-
linear support vector machine classifier for
a massive dataset. The basic idea of RSVM
is using a small rectangular kernel matrix to
replace the fully dense square kernel matrix
used in the nonlinear support vector machine
formulation without scarifying the accuracy.
Computational time, as well as memory us-
age, is much smaller for RSVM than that
for a conventional SVM using the entire
dataset. As a result, RSVM also simplifies the
characterization of the nonlinear separating
surface. According to Occam’s razor [13], as
well as Minimum Description Length (MDL)
[13], RSVM might have better generaliza-
tion ability than a conventional SVM. This
reduced kernel technique has been success-
fully applied to other kernel-based learning
algorithm, such as proximal support vector
machine (PSVM) [4] andε-smooth support
vector regression (ε-SSVR) [8]. In [7], the re-
duced set is selected randomly from the entire
dataset with a user pre-specified reduced set
size m̄. It is typically much smaller than the
size of entire dataset. It is natural to raise two
questions as follows:

1) Is there a way to choose the reduced



set other than random selection so that
RSVM will have a better performance?

2) Is there a mechanism that determines
the size of reduced set automatically or
dynamically?

In this paper, we propose our Incremental
Reduced Support Vector Machine (IRSVM)
that automatically and incrementally selects
representative data points to form the re-
duced set. The experimental tests on four
publicly available datasets from the Univer-
sity of California (UC) Irvine repository [14]
show that IRSVM used a smaller reduced set
than RSVM without scarifying classification
accuracy.

Now we briefly outline the contents of
the paper. Section 2 provides the main idea
and formula for RSVM. In section 3, we
describe our sequential and batch versions of
incremental reduced support vector machine.
The numerical results are shown in Section 4.
Section 5 concludes the paper.

A word about our notation and background
material is given below. All vectors will be
column vectors unless transposed to a row
vector by a prime superscript′. For a vec-
tor x in the n-dimensional real spaceRn,
the plus functionx+ is defined as(x+)i =
max {0, xi}, while the step functionx∗ is
defined as(x∗)i = 1 if xi > 0 else(x∗)i = 0,
i = 1, . . . , n. The scalar (inner) product of
two vectorsx andy in then-dimensional real
spaceRn will be denoted byx′y and thep-
norm of x will be denoted by‖x‖p. For a
matrix A ∈ Rm×n, Ai is the ith row of A
which is a row vector inRn. A column vector
of ones of arbitrary dimension will be denoted
by e. ForA ∈ Rm×n andB ∈ Rn×l, the kernel
K(A,B) mapsRm×n × Rn×l into Rm×l. In
particular, ifx andy are column vectors inRn

then,K(x′, y) is a real number,K(x′, A′) is a
row vector inRm andK(A,A′) is anm×m
matrix. The difference of two setsA and B
is defined asA \B = {x|x ∈ A andx /∈ B}.
2. Reduced Support Vector Machines

We consider the problem of classifying
points into two classes,A+ and A−. We are
given a dataset consisting ofm points in the
n-dimensional real spaceRn. Each point in
the dataset comes with a class label,+1 or

−1, indicating one of two classes,A+ and
A−, to which the point belongs. We represent
these data points by anm×n matrixA, where
theith row of the matrixA, Ai, corresponds to
the ith data point. We use anm×m diagonal
matrix D with ones or minus ones along its
diagonal to specify the membership of each
point. In other words,Dii = ±1 depending
on whether the label ofith data point is+1
or −1. The main goal of the classification
problem is to find a classifier that can predict
the label of new unseen data points correctly.
This can be achieved by constructing a lin-
ear or nonlinear separating surface which is
implicitly defined by a kernel function. We
will focus on nonlinear case in this paper. The
nonlinear kernel matrixK(A,A′) ∈ Rm×m

(wherem is the size of the training set) on
large datasets used in conventional support
vector machine [1], [2], [16] will lead to some
computational difficulties [7]. To avoid these
difficulties, the reduced support vector ma-
chine (RSVM) [7] uses a very small random
subset of sizēm of the originalm data points,
where m̄ << m. We denote this random
subset byĀ, which is used to generate a much
smaller rectangular matrixK(A, Ā′) ∈ Rm×m̄

and to replace the huge and fully dense square
kernel matrixK(A,A′) used in conventional
SVM to cut problem size, computational time
and memory usage as well as to simplify
the characterization of nonlinear separating
surface. We now briefly describe the reduced
support vector machine formulation, which is
derived from the generalized support vector
machine (GSVM) [11] and smooth support
vector machine [9]. The RSVM solves the fol-
lowing unconstrained minimization problem
for an arbitrary rectangular kernelK(A, Ā′):

min
(ū,γ)∈Rm̄+1

ν

2
‖p(e−D(K(A, Ā′)D̄ū− eγ), α)‖2

2

+
1

2
(ū′ū + γ2), (1)

where the functionp(x, α) is a very accurate
smooth approximation to(x)+ [9], which
is applied to each component of the vector
e − D(K(A, Ā′)D̄ū − eγ) and is defined
componentwise by

p(x, α) = x +
1

α
log(1 + e−αx), α > 0. (2)



The function p(x, α) converges to(x)+ as
α goes to infinity. The positive tuning pa-
rameterν here controls the tradeoff between
the classification error and the suppression
of (ū, γ).The diagonal matrixD̄ ∈ Rm̄×m̄

with ones or minus ones along its diagonal to
specify the membership of each point in the
reduced set. A solution of this minimization
program for ū and γ leads to the nonlinear
separating surface

K(x′, Ā′)D̄ū = γ. (3)

Problem (1) retains the strong convexity
and differentiability properties in theRm̄+1

space of(ū, γ) for any arbitraryrectangular
kernel. Hence we can apply the Newton-
Armijo Algorithm [9] directly to solve (1) and
the existence and uniqueness of the optimal
solution of the minimization problem (1) are
also guaranteed. For convenience, we use
Φα,ν(ū, γ) to represent the objective function
(1) throughout the rest of the paper. We note
that the nonlinear separating surface (3) is a
linear combination of a set of kernel func-
tions

{
1, K(·, Ā′

1), K(·, Ā′
2), · · · , K(·, Ā′

m̄)
}

.
That is, the separating surface is of the form

m̄∑
i=1

K(x′, Ā′
i)D̄iiūi = γ. (4)

In a nutshell, the RSVM can be
split into two parts. First, it selects a
small random subset from the entire
dataset to form a dictionary function set,{
1, K(·, Ā′

1), K(·, Ā′
2), · · · , K(·, Ā′

m̄)
}

. The
size of this small random subset is pre-
specified by users. Secondly, it determines
the best coefficients of the kernel functions
in the dictionary function set by solving
the unconstrained minimization problem (1).
The classifier is a linear combination of
these kernel functions with these coefficients.
In next section we modify the first part
of the RSVM algorithm and introduce
an incremental approach that begins with
an extremely small reduced set and then
sequentially expands the reduced set
according to an information criterion. The
dictionary function set is generated by this
resulting reduced set. Besides, the size of
the dictionary function set is dynamically

determined by the algorithm and typically is
smaller than the purely random ones under
the same performance level.

3. Incremental Reduced Support Vector
Machines

In this section, we propose our Incremental
Reduced Support Vector Machine (IRSVM)
algorithm that automatically and incremen-
tally selects informative data points from the
entire training set to generate the rectangular
kernel matrix used in RSVM.

The nonlinear classifier generated by
RSVM, as shown in (4), is a linear
combination of a dictionary function
set [6] that consists of kernel functions{
1, K(·, Ā′

1), K(·, Ā′
2), · · · , K(·, Ā′

m̄)
}

induced by the reduced set̄A. Intuitively, if
the kernel functions in the dictionary function
set are very “similar”, the hypothesis space
spanned by this dictionary function set will
be very limited.

Based on this intuition, we propose a pro-
cess that sequentially adding a kernel function
into the dictionary function set, only when
the function is “unsimilar” to the current
set and carrying sufficient extra information
over the current set. We start with a very
small reduced set̄A, typically a size of 2,
then we add a new data pointAi into the
reduced set only when the extra information
carried in the vectorK(A,A′

i) with respect
to the column space ofK(A, Ā′) is greater
than a certain positive threshold. This can be
achieved by solving a least squares problem.
We letK̄ = K(A, Ā′) ∈ Rm×m̄ for the reason
of convenience. The least squares problem we
need to solve is

min
β∈Rm̄

∥∥K̄β −K(A,A′
i)
∥∥2

2
, (5)

whereβ ∈ Rm̄ is a free vector variable and
K̄β ∈ Rm is a linear combination of the func-
tions K(A, Ā′

i), i = 1, . . . , m̄ that represents
the column space ofK(A, Ā′). According
to the first order optimality condition [10],
finding out the optimal solutionβ∗ of above
problem (5) is equivalent to solving a system
of normal equations:

K̄ ′K̄β = K̄ ′K(A,A′
i). (6)



If the columns of the rectangular kernel
matrix generated by the initial reduced set
are linear independent, our IRSVM algorithm
(the sequential version) will keep the indepen-
dence property throughout the whole process,
so that the least squares problem (5) has a
unique solutionβ∗,

β∗ = (K̄ ′K̄)−1K̄ ′K(A,A′
i). (7)

The distancer from K(A,A′
i) to the col-

umn space ofK̄ is the squared root of the
optimal value of (5) and is computed by

r =
∥∥K̄β∗ −K(A,A′

i)
∥∥

2
. (8)

The square distance can be written in
the form r2 = (I − P )K(A,A′

i), where
P = K̄(K̄ ′K̄)−1K̄ ′ is the projection matrix
of Rm onto the column space of̄K. In other
words, r2 is the excess information carried
in K(A,A′

i) over K(A, Ā′). Note that the
size of the reduced set is very small, hence it
will not lead to any computational difficulty
in solving the least squares problem, though
we have to solve it many times in the whole
process. Below we describe two algorithms,
sequential and batch versions.

Algorithm 3.1 IRSVM Algorithm (sequen-
tial version)
Let δ > 0 be a given threshold.

1) Choose a very small random subset
matrix Ā0 ∈ Rm̄×n from the training
data matrixA ∈ Rm×n, say m̄ = 2, as
an initial reduced set, and generate the
reduced kernel matrixK(A, Ā′

0). Let
Ānew = Ā0.

2) SelectAj ∈ A\Ā0 and compute the dis-
tancer from the kernel vectorK(A, Ā′

j)
to the column space ofK(A, Ā′

new) by
using (8).

3) If r > δ then Ānew = Ānew ∪ Aj.
4) Repeat Step 2) until several successive

failures happened in 3), then the re-
sultingK(A, Ā′

new) is our final reduced
kernel.

5) Apply the Newton-Armijo Algorithm
[9] to solve the objective function (1):

min
(ū,γ)∈Rm̄+1

Φα,ν(ū, γ), (9)

where the reduced kernelK(A, Ā′) in
(1) is that obtained in Step 4).

6) The separating surface is given as fol-
lows:

K(x′, Ā′)D̄ū = γ, (10)

where (ū, γ) ∈ Rm̄+1 is the unique
solution to (9).

7) A new point x ∈ Rn is classified into
class+1 or −1 depending on whether
the step function:

(K(x′, Ā′)D̄ū− γ)∗, (11)

is +1 or zero, respectively.

We note that we have to solve normal
equations (6) many times in Algorithm 3.1.
The time complexity of this step isO(m̄3),
where m̄ is the current size of the reduced
set. In fact, the main cost of solving the
normal equations depends on̄K ′K̄, but not
on K(A,A′

j). For example, if we have the
LU decomposition ofK̄ ′K̄, we will get the
solution of (6) by backward and forward
substitution for anyK(A, A′

j) [5]. In order
to speed up Algorithm 3.1, we take the
advantage of this fact, and use a batch of
data points to generate the new reduced
set. We propose a batch version IRSVM
algorithm as follows:

Algorithm 3.2 IRSVM Algorithm (batch
version)
Let δ > 0 be a given threshold andl be a
given batch size.̄Bi ∈ Rl×n denotes a batch
of data andr denotes a distance vector.

1) Choose a very small random subset
matrix Ā0 ∈ Rm̄×n from the training
data matrixA ∈ Rm×n, saym̄ = 2, as
an initial reduced set, and generate the
reduced kernel matrixK(A, Ā′

0). Let
Ānew = Ā0.

2) For Aj to Aj+l ∈ A \ Ā0, form a batch
B̄i.

3) For each B̄i, compute the distance
vector r, which consists of individual
distances from each of the columns
of K(A, B̄′

i) to the column space of
K(A, Ā′

new) by using (8).



4) For eachAj ∈ B̄i, Ānew = Ānew ∪
Aj if the corresponding distance value
exceeds the thresholdδ.

5) Repeat Step 3) until several successive
failures in adding new points. Then
K(A, Ā′

new) is our resulting reduced
kernel.

6) Apply the Newton-Armijo Algorithm
[9] to solve the objective function (1):

min
(ū,γ)∈Rm̄+1

Φα,ν(ū, γ), (12)

where the reduced kernelK(A, Ā′) in
(1) is that obtained in Step 5).

7) The separating surface is given as fol-
lows:

K(x′, Ā′)D̄ū = γ, (13)

where (ū, γ) ∈ Rm̄+1 is the unique
solution to (10), andx ∈ Rn is a free
input space variable of a new point.

8) A new point x ∈ Rn is classified into
class+1 or −1 depending on whether
the step function:

(K(x′, Ā′)D̄ū− γ)∗, (14)

is +1 or zero, respectively.

This modified algorithm significantly re-
duces the number of times of solving the
normal equations. One awareness is that “sim-
ilar ” points in the same batch might be added
into our reduced set. But for the reason of
speed, this algorithm is considerable. In next
section, we will show experimental results
about the performance of our algorithm.

4. Numerical Results and Comparisons

We applied IRSVM on four publicly avail-
able test problems, Cleveland Heart Problem,
BUPA Liver, Ionosphere and Pima Indians
from the University of California (UC) Irvine
repository. The numerical results showed that
IRSVM achieved comparable test set correct-
ness with SSVM and RSVM, while with a
much smaller reduced set size than RSVM.

We implemented the batch version of
IRSVM using standard native MATLAB com-
mands and used Gaussian kernel,K(x, z′) =
e−µ‖x−z‖22 , x, z ∈ Rn for all our numeri-
cal tests. All parameters in these tests were
chosen for optimal performance on a tuning

set, a surrogate for a test set. All our ex-
periments were run on a personal computer,
which consists of Pentium-4 2.4GHz proces-
sor, 256 megabytes of memory and utilizing
the Windows 2000 operating system.

In order to evaluate how well each method
generalizes to future data, we performed ten-
fold cross-validation on each dataset [15]. We
also usedstratificationscheme in splitting the
entire dataset to keep the “similarity” between
training and testing datasets. That is, we try to
make the distributions of training and testing
sets as closed as possible [17]. A smaller test-
ing error indicates a better prediction ability.
The results are shown in Table I. It can be
found that IRSVM used a smaller reduced
set than RSVM to generate the nonlinear
separating surface at a comparable accuracy
level.

5. Conclusion

We have proposed an Incremental Reduced
Support Vector Machine (IRSVM) that starts
with an extremely small reduced set and then
sequentially expands to include informative
data points into the reduced set. These in-
formative data points will be identified by
solving a small least squares problem. Our
approach provides a mechanism to determine
the size of the reduced set automatically and
dynamically but not pre-specified and the
reduced set generated by this method will be
more representative than the one by purely
random selection. We have also proposed
a batch version of IRSVM that will save
some computation effort in solving a series
of least squares problems. All advantages of
RSVM for dealing with large scale nonlinear
classification problem are retained. Moreover,
the experimental tests on four publicly avail-
able dataset from the University of Irvine
repository show that IRSVM used a smaller
reduced set than RSVM without scarifying
classification accuracy. With all these proper-
ties, IRSVM appears to be a very promising
method for handling large scale classification
problems using a nonlinear separating surface.
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